Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 406: 110114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522633

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) derived neural stem cells (NSCs) provide a potential for autologous neural transplantation therapy following neurological insults. Thus far, in preclinical studies the donor iPSCs-NSCs are mostly of human or mouse origin with concerns centering around graft rejection when applied to rat brain injury models. For better survival and integration of transplanted cells in the injured brain in rat models, use of rat-iPSC-NSCs and in combination with biomaterials is of advantageous. Herein, we report a detailed method in generating rat iPSCs with improved reprogramming efficiency and differentiation into neurons. NEW METHOD: Rat fibroblasts were reprogrammed into iPSCs with polybrene and EF1α-STEMCCA-LoxP lentivirus vector. Pluripotency characterization, differentiation into neuronal linage cells were assessed with RT-qPCR, Western blotting, immunostaining and patch-clamp methods. Cells were cultured in a custom-designed integrin array system as well as in a hydrogel-based 3D condition. RESULTS: We describe a thorough method for the generation of rat-iPSC-NSCs, and identify integrin αvß8 as a substrate for the optimal growth of rat-iPSC-NSCs. Furthermore, with hydrogel as the supporting biomaterial in the 3-D culture, when combined with integrin αvß8 binding peptide, it forms a conducive environment for optimal growth and differentiation of iPSC-NSCs into mature neurons. COMPARISON WITH EXISTING METHODS: Published studies about rat-iPSC-NSCs are rare. This study provides a detailed protocol for the generation of rat iPSC-NSCs and optimal growth conditions for neuronal differentiation. Our method is useable for studies to assess the utility of rat iPSC-NSCs for neural transplantation in rat brain injury models.


Assuntos
Diferenciação Celular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Neurônios , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Fibroblastos/fisiologia , Fibroblastos/citologia , Neurônios/citologia , Neurônios/fisiologia , Diferenciação Celular/fisiologia , Ratos , Células Cultivadas , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Técnicas de Cultura de Células/métodos , Ratos Sprague-Dawley
2.
Glia ; 71(10): 2437-2455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417428

RESUMO

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Assuntos
Astrócitos , Yin-Yang , Animais , Camundongos , Astrócitos/metabolismo , Cerebelo/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
3.
ACS Chem Neurosci ; 11(6): 851-863, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32078767

RESUMO

The photodynamic process requires three elements: light, oxygen, and photosensitizer, and involves the formation of singlet oxygen, the molecular oxygen in excited electronic states. Previously, we reported that heterologously expressed hyperpolarization-activated cAMP-gated (HCN) channels in excised membrane patches are sensitive to photodynamic modification (PDM). Here we extend this study to native HCN channels expressed in thalamocortical (TC) neurons in the ventrobasal (VB) complex of the thalamus and dopaminergic neurons (DA) of the ventral tegmental area (VTA). To do this, we introduced the photosensitizer FITC-cAMP into TCs or DAs of rodent brain slices via a whole-cell patch-clamp recording pipette. After illumination with blue light pulses, we observed an increase in the voltage-insensitive, instantaneous Iinst component, accompanied by a long-lasting decrease in the hyperpolarization-dependent Ih component. Both Ih and the increased Iinst after PDM could be blocked by the HCN blockers Cs+ and ZD7288. When FITC and cAMP were dissociated and loaded into neurons as two separate chemicals, light application did not result in any long-lasting changes of the HCN currents. In contrast, light pulses applied to HCN2-/- neurons loaded with FITC-cAMP generated a much greater reduction in the Iinst component compared to that of WT neurons. Next, we investigated the impact of the long-lasting increases in Iinst after PDM on the cellular physiology of VB neurons. Consistent with an upregulation of HCN channel function, PDM elicited a depolarization of the resting membrane potential (RMP). Importantly, Trolox-C, an effective quencher for singlet oxygen, could block the PDM-dependent increase in Iinst and depolarization of the RMP. We propose that PDM of native HCN channels under physiological conditions may provide a photodynamic approach to alleviate HCN channelopathy in certain pathological conditions.


Assuntos
Córtex Cerebral , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios , Animais , Córtex Cerebral/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Tálamo/metabolismo
4.
Front Cell Neurosci ; 11: 257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839452

RESUMO

[This corrects the article on p. 513 in vol. 9, PMID: 26793064.].

5.
Front Cell Neurosci ; 9: 513, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793064

RESUMO

It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...